Reactions of 2,4-Azetidinedione with Nucleophilic Reagents

Kazuhiro Maruyama* and Yoshihiro Arita

Department of Chemistry, Faculty of Science, Kyoto University, Sakyo-ku, Kyoto 606

(Received December 21, 1982)

Synopsis. The reaction of 2,4-azetidinedione with a variety of nucleophiles was compared with that of *N*-methylsuccinimide. 2,4-Azetidinedione gave ring-cleaved addition products, while *N*-methylsuccinimide afforded simply addition products to the carbonyl group.

© 1983 The Chemical Society of Japan

It is known that imide compounds show a variety of reactivity with nucleophilic reagents depending on their structures.¹⁾ For instance, N-phenylsuccinimide reacts with ethylmagnesium bromide to give 2-ethyl-2-hydroxy-1-phenylpyrrolidine (1), while arylmagnesium bromides react with N-substituted maleimides to yield N-substituted 5-aryl-5-hydroxy-2-pyrrolidones (2) (See Fig. 1).²⁾ Under certain conditions, the imide ring is

cleaved by the Grignard reagent, i.e., N-methyl keto amide was the product of the reaction of N-methyl-succinimide with ethylmagnesium bromide.³⁾ Diphenyl and diethyl substituted N-phenylmalonimides react with three equivalents of aryl Grignard reagents to give the disubstituted N-phenylacetamides and the tertiary alcohols derived from the Grignard reagents.⁴⁾

Recently, the authors⁵⁾ reported photochemistry of N-methyl-cis-1,2-cyclohexanedicarboximide (3), which afforded four-membered ring imide, 2,4-azetidinedione 4.6) In this report, the reaction of this photoproduct 4 with some nucleophiles has been studied and compared with the reactivity of succinimide 3.

Results and Discussion

Reactions of 3 and 4 with various Grignard reagents (RMgX) were summarized in Scheme 1 and Table 1. Grignard reagents reacted with 3 to give the hydroxy lactams 5. The yields of 5 were fairly good. The corresponding reaction of 4 afforded ring-cleaved products 6, 7, and 8. The β -keto amide 6 was the primary product and an excess amount of Grignard reagents reacted with keto carbonyl group of 6 to give the double alkylated products 7 and the reduced

products 8. Because the primary product 6 is sterically hindered by the tertiary carbon, reduction of 6 to 8 occurs mainly when R is bulky. Especially when R=i-Pr, t-Bu, octyl, and cyclohexyl, reduction products 8 (8c, 8e, 8f, and 8g) were exclusively produced and none of double alkylation products 7 was detected.

Table 1. Yield of the products in the reaction of 3 and 4 with grignard reagents

R	in RMgX	Reaction of 3 Yield of 5/%	Reaction of 4		
			Yield of 6/%	Yield of 7/%	Yield of 8/%
a	Me	85	11	63	
b	Et	99	4	44	52
c	i-Pr	96			85
d	n-Bu	95	6	12	79
e	t-Bu	47			50
f	Octyl	95	_		96
g	Cyclohexyl	96	*******		92
h	Ph	97		99	
i	Allyl	95		72	_
j	Vinyl	84	<u> </u>	(7k ,*) 90)	

The difference of the reactions between 3 and 4 may be explained as follows. Grignard reagents attack one of the carbonyl carbons of the imide 3 to form the five-membered ring intermediate. The same type of the intermediate is perhaps produced in the reaction of 4. Since ring strain of four-membered ring is larger than that of five-membered ring, the four-membered ring intermediate could immediately isomerize to the ring-cleaved intermediate, 4) the precursor of 6, 7, and 8.

Reductions of 3 and 4 with sodium borohydride of lithium aluminum hydride proceeded similarly. The imide 3 was reduced to the hydroxy lactam 5, (R=H), while the imide 4 gave the formyl amide 6, (R=H). Here, it seems to be general that four-membered imides are ring-cleaved but five-membered imides are not cleaved in the course of the reaction.

When lithium reagents were used as the nucleophile, a new reaction was observed. Thus, phenyllithium reacted with 3 to give the ring-cleaved keto amide 9 as well as 5h. The imide 4 afforded the amide 10 with addition of an excess amount of phenyllithium in the reacting mixture (See Fig. 2). The lithium reagent is a stronger base than the Grignard reagent and also 3 has a hydrogen at the position adjacent to the carbonyl group. These facts may cause the difference between the reactions of Grignard reagents and lithium reagents. The formation of 10 may be explained by retro-Aldol type reaction. Actually, treatment of 7h with phenyl-

lithium afforded the same product 10 and triphenyl-methanol.

It is general that only one of the carbonyl carbons of imides photochemically behaves like a simple ketone.⁷⁾ In the present study, it is realized that ring size of cyclic imides strongly affects its chemical reaction pathway.

References

- 1) M. K. Hargreaves, J. G. Pritchard, and H. R. Dave, Chem. Rev., 70, 439, (1970).
 - 2) A. Queen and A. Reipas, J. Chem. Soc., 1967, 245.
- 3) R. Lukev and Z. Linhartova, Collect. Czech. Chem. Commun., 25, 502, (1960).
- 4) W. Flitsch and R. Heidhues, Z. Naturforsch., β , 21, 1137, (1966).
- 5) K. Maruyama, T. Ishitoku, and Y. Kubo, J. Org. Chem., 46, 27, (1981).
- 6) N. H. Cromwell and B. Phillips, Chem. Rev., 79, 331, (1979).
- 7) a) K. Maruyama and Y. Kubo, J. Org. Chem., 42, 3215, (1977). b) K. Maruyama and Y. Kubo, J. Org. Chem., 46, 3612, (1981) and references sited therein. c) Y. Kanaoka, Acc. Chem. Res., 11, 407, (1978).